Correlation stress testing for value-at-risk: an unconstrained convex optimization approach
نویسندگان
چکیده
Correlation stress testing is employed in several financial models for determining the value-at-risk (VaR) of a financial institution’s portfolio. The possible lack of mathematical consistence in the target correlation matrix, which must be positive semidefinite, often causes breakdown of these models. The target matrix is obtained by fixing some of the correlations (often contained in blocks of submatrices) in the current correlation matrix while stressing the remaining to a certain level to reflect various stressing scenarios. The combination of fixing and stressing effects often leads to mathematical inconsistence of the target matrix. It is then naturally to find the nearest correlation matrix to the target matrix with the fixed correlations unaltered. However, the number of fixed correlations could be potentially very large, posing a computational challenge to existing methods. In this paper, we propose an unconstrained convex optimization approach by solving one or a sequence of continuously differentiable (but not twice continuously differentiable) convex optimization problems, depending on different stress patterns. This research fully takes advantage of the recently developed theory of strongly semismooth matrix valued functions, which makes fast convergent numerical methods applicable to the underlying unconstrained optimization problem. Promising numerical results on practical data (RiskMetrics database) and randomly generated problems of larger sizes are reported. Research of H. Qi was partially supported by EPSRC Grant EP/D502535/1. Research of D. Sun was partially supported by Grant R146-000-104-112 of the National University of Singapore. H. Qi School of Mathematics, The University of Southampton, Highfield, Southampton SO17 1BJ, UK e-mail: [email protected] D.F. Sun ( ) Department of Mathematics and Risk Management Institute, National University of Singapore, Singapore 117543, Singapore e-mail: [email protected]
منابع مشابه
Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملA Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization
In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...
متن کاملA limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 45 شماره
صفحات -
تاریخ انتشار 2010